10-2. Parabola, Ellipse, Hyperbola
medium

Find the equation for the ellipse that satisfies the given conditions: Centre at $(0,\,0),$ major axis on the $y-$ axis and passes through the points $(3,\,2)$ and $(1,\,6)$

Option A
Option B
Option C
Option D

Solution

since the centre is at $(0,\,0)$ and the major axis is on the $y-$ axis, the equation of the ellipse will be of the form

$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$             ……….. $(1)$

Where, a is the semi-major axis The ellipse passes through points $(3,\,2)$ and $(1,\,6) .$  Hence,

$\frac{9}{b^{2}}+\frac{4}{a^{2}}=1$            ……….. $(2)$

$\frac{1}{b^{2}}+\frac{36}{a^{2}}=1$            ……….. $(3)$

On solving equations $(2)$ and $(3),$ we obtain $b^{2}=10$ and $a^{2}=40$.

Thus, the equation of the ellipse is $\frac{x^{2}}{10^{2}}+\frac{y^{2}}{40}=1$ or $4 x^{2}+y^{2}=40$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.