Find the equation for the ellipse that satisfies the given conditions: Centre at $(0,\,0),$ major axis on the $y-$ axis and passes through the points $(3,\,2)$ and $(1,\,6)$
since the centre is at $(0,\,0)$ and the major axis is on the $y-$ axis, the equation of the ellipse will be of the form
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ ........... $(1)$
Where, a is the semi-major axis The ellipse passes through points $(3,\,2)$ and $(1,\,6) .$ Hence,
$\frac{9}{b^{2}}+\frac{4}{a^{2}}=1$ ........... $(2)$
$\frac{1}{b^{2}}+\frac{36}{a^{2}}=1$ ........... $(3)$
On solving equations $(2)$ and $(3),$ we obtain $b^{2}=10$ and $a^{2}=40$.
Thus, the equation of the ellipse is $\frac{x^{2}}{10^{2}}+\frac{y^{2}}{40}=1$ or $4 x^{2}+y^{2}=40$
The angle of intersection of ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ and circle ${x^2} + {y^2} = ab$, is
If the co-ordinates of two points $A$ and $B$ are $(\sqrt{7}, 0)$ and $(-\sqrt{7}, 0)$ respectively and $P$ is any point on the conic, $9 x^{2}+16 y^{2}=144,$ then $PA + PB$ is equal to
The equations of the directrices of the ellipse $16{x^2} + 25{y^2} = 400$ are
The equation of an ellipse, whose vertices are $(2, -2), (2, 4)$ and eccentricity $\frac{1}{3}$, is
The tangent and normal to the ellipse $3x^2 + 5y^2 = 32$ at the point $P(2, 2)$ meet the $x-$ axis at $Q$ and $R,$ respectively. Then the area(in sq. units) of the triangle $PQR$ is