The line $12 x \,\cos \theta+5 y \,\sin \theta=60$ is tangent to which of the following curves?
$x^{2}+y^{2}=169$
$144 x^{2}+25 y^{2}=3600$
$25 x^{2}+12 y^{2}=3600$
$x^{2}+y^{2}=60$
Eccentric angle of a point on the ellipse ${x^2} + 3{y^2} = 6$ at a distance $2$ units from the centre of the ellipse is
If a tangent to the ellipse $x^{2}+4 y^{2}=4$ meets the tangents at the extremities of its major axis at $\mathrm{B}$ and $\mathrm{C}$, then the circle with $\mathrm{BC}$ as diameter passes through the point:
If the curves, $\frac{x^{2}}{a}+\frac{y^{2}}{b}=1$ and $\frac{x^{2}}{c}+\frac{y^{2}}{d}=1$ intersect each other at an angle of $90^{\circ},$ then which of the following relations is TRUE ?
The locus of mid points of parts in between axes and tangents of ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ will be
The centre of the ellipse$\frac{{{{(x + y - 2)}^2}}}{9} + \frac{{{{(x - y)}^2}}}{{16}} = 1$ is