$(p \to q) \leftrightarrow (q\ \vee \sim p)$ is
Equivalent to $p \wedge q$
Tautology
Fallacy
Neither tautology nor fallacy
Which of the following is a contradiction
The negation of the statement $(p \vee q)^{\wedge}(q \vee(\sim r))$ is
The statement $(\mathrm{p} \wedge(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{r})) \rightarrow \mathrm{r}$ is :
Which of the following is not a statement
The statement $(\sim( p \Leftrightarrow \sim q )) \wedge q$ is :