Which of the following is a tautology?
$(\sim \mathrm{p}) \wedge(\mathrm{p} \vee \mathrm{q}) \rightarrow \mathrm{q}$
$(\mathrm{q} \rightarrow \mathrm{p}) \vee \sim(\mathrm{p} \rightarrow \mathrm{q})$
$(p \rightarrow q) \wedge(q \rightarrow p)$
$(\sim \mathrm{q}) \vee(\mathrm{p} \wedge \mathrm{q}) \rightarrow \mathrm{q}$
Negation is $“2 + 3 = 5$ and $8 < 10”$ is
$\sim (p \vee q) \vee (~ p \wedge q)$ is logically equivalent to
The propositions $(p \Rightarrow \;\sim p) \wedge (\sim p \Rightarrow p)$ is a
The compound statement $(\mathrm{P} \vee \mathrm{Q}) \wedge(\sim \mathrm{P}) \Rightarrow \mathrm{Q}$ is equivalent to:
$\sim (p \vee (\sim q))$ is equal to .......