A 3.628 kg freight car moving along a horizontal rail road spur track at $7.2\; km/hour$ strikes a bumper whose coil springs experiences a maximum compression of $30 \;cm$ in stopping the car. The elastic potential energy of the springs at the instant when they are compressed $15\; cm$ is [2013]
(a) $12.1 \times 10^4\;J$ (b) $121 \times 10^4\;J$ (c) $1.21 \times 10^4\;J$ (d) $1.21 \times 10^4\;J$
zero
$mgvt$ $\cos ^2 \theta$
$mgvt$ $\sin ^2 \theta$
$mgvt$ $\sin 2 \theta$
A body of mass $m$ is projected from ground with speed $u$ at an angle $\theta$ with horizontal. The power delivered by gravity to it at half of maximum height from ground is
A force $\overrightarrow F = (5\hat i + 3\hat j)$Newton is applied over a particle which displaces it from its origin to the point $\overrightarrow r = (2\hat i - 1\hat j)$ metres. The work done on the particle is..............$J$
A frictionless track $ABCDE$ ends in a circular loop of radius $R$ .A body slides down the track from point $A$ which is at a height $h = 5\, cm$. Maximum value of $R$ for the body to successfully complete the loop is .................. $\mathrm{cm}$
A curved surface is shown in figure. The portion $BCD$ is free of friction. There are three spherical balls of identical radii and masses. Balls are released from rest one by one from $A$ which is at a slightly greater height than $C$.
With the surface $AB$, ball $1$ has large enough friction to cause rolling down without slipping; ball $2$ has a small friction and ball $3$ has a negligible friction.
$(a)$ For which balls is total mechanical energy conserved ?
$(b)$ Which ball $(s)$ can reach $D$ ?
$(c)$ For ball which do not reach $D$, which of the balls can reach back $A$ ?
The spacecraft of mass $M$ moves with velocity $V$ in free space at first, then it explodes breaking into two pieces. If after explosion a piece of mass $m$ comes to rest, the other piece of space craft will have a velocity