A $10\, m$ long steel wire has mass $5\,g$. If the wire is under a tension of $80\, N$, the speed of transverse waves on the wire is .... $ms^{-1}$
$100$
$200$
$400$
$500$
A train whistling at constant frequency is moving towards a station at a constant speed $V$. The train goes past a stationary observer on the station. The frequency $n'$ of the sound as heard by the observer is plotted as a function of time $t (Fig.)$ . Identify the expected curve
Two tuning forks having frequency $256\, Hz \,(A)$ and $262\, Hz \,(B)$ tuning fork. $A$ produces some beats per second with unknown tuning fork, same unknown tuning fork produce double beats per second from $B$ tuning fork then the frequency of unknown tuning fork is :- ............ $\mathrm{Hz}$
Two trains $A$ and $B$ initially $120\, km$ apart, start moving towards each other on the same track with a velocity of $60\, km/hr$ each. At the moment of start $A$ blows a whistle, which reflects on $B$ and subsequently reflects from $A$ and so on. Take the velocity of sound waves in air $1200\, km/hr$. The distance travelled by sound waves before the trains crash will be (in $km$)
A train standing at the outer signal of a railway station blows a whistle of frequency $400\, Hz$ in still air. What is the frequency of the whistle for a platform observer when the train recedes from the platform with a speed of $10\, m/s$ ...... $Hz$ . (Speed of sound $= 340\, m/s$)
A string fixed at one end is vibrating in its second overtone. The length of the string is $10\ cm$ and maximum amplitude of vibration of particles of the string is $2\ mm$ . Then the amplitude of the particle at $9\ cm$ from the open end is