A $bob$ of mass $m$ attached to an inextensible string of length $l$ is suspended from a vertical support. The $bob$ rotates in a horizontal circle with an angular speed $\omega\, rad/s$ about the vertical. About the point of suspension
Angular momentum changes in direction but not in magnitude
Angular momentum changes both in direction and magnitude
Angular momentum is conserved
Angular momentum changes in magnitude but not in direction
$A$ particle of mass $2\, kg$ located at the position $(\hat i + \hat j)$ $m$ has a velocity $2( + \hat i - \hat j + \hat k)m/s$. Its angular momentum about $z$ -axis in $kg-m^2/s$ is
A particle is moving in a circular path of radius $a,$ with a constant velocity $v$ as shown in the figure.The centre of circle is marked by $'C'$. The angular momentum from the origin $O$ can be written as
Explain Angular momentum of a particle and show that it is the moment of linear momentum about the reference point.
A metre stick is pivoted about its centre. A piece of wax of mass $20 \,g$ travelling horizontally and perpendicular to it at $5 \,m / s$ strikes and adheres to one end of the stick so that the stick starts to rotate in a horizontal circle. Given the moment of inertia of the stick and wax about the pivot is $0.02 \,kg m ^2$, the initial angular velocity of the stick is ........... $rad / s$
A bullet of mass $10\, g$ and speed $500\, m/s$ is fired into a door and gets embedded exactly at the centre of the door. The door is $1.0\, m$ wide and weighs $12\, kg$. It is hinged at one end and rotates about a vertical axis practically without friction . The angular speed of the door just after the bullet embeds into it will be