6.System of Particles and Rotational Motion
hard

A uniform rod $A B$ of mass $2 \mathrm{~kg}$ and Length $30 \mathrm{~cm}$ at rest on a smooth horizontal surface. An impulse of force $0.2\  \mathrm{Ns}$ is applied to end $B.$ The time taken by the rod to turn through at right angles will be $\frac{\pi}{\mathrm{x}}\  \mathrm{s}$, where  X=____

A

$4$

B

$5$

C

$6$

D

$7$

(JEE MAIN-2024)

Solution

Impulse $\mathrm{J}=0.2 \mathrm{~N}-\mathrm{S}$

$\mathrm{J}=\int \mathrm{Fdt}=0.2 \mathrm{~N}-\mathrm{s}$

Angular impuls ( $\overrightarrow{\mathrm{M}})$

$\overrightarrow{\mathrm{M}}_{\mathrm{c}}=\int \tau \mathrm{dt}$

$=\int \mathrm{F} \frac{\mathrm{L}}{2} \mathrm{dt}$

$=\frac{\mathrm{L}}{2} \int \mathrm{Fdt}=\frac{\mathrm{L}}{2} \times \mathrm{J}v$

$=\frac{0.3}{2} \times 0.2$

$=0.03$

$I_{c m}=\frac{\mathrm{LL}^2}{12}=\frac{2 \times(0.3)^2}{12}=\frac{0.09}{6}$

$\mathrm{M}=\mathrm{I}_{\mathrm{cm}}\left(\omega_{\mathrm{f}}-\omega_{\mathrm{i}}\right)$

$0.03=\frac{0.09}{6}\left(\omega_{\mathrm{f}}\right)$

$\omega_{\mathrm{f}}=2 \mathrm{rad} / \mathrm{s}$

$\theta=\omega \mathrm{t}$

$\mathrm{t}=\frac{\theta}{\omega}=\frac{\pi}{2 \times 2}=\frac{\pi}{4} \mathrm{sec} .$

$\mathrm{X}=4$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.