A uniform rod $A B$ of mass $2 \mathrm{~kg}$ and Length $30 \mathrm{~cm}$ at rest on a smooth horizontal surface. An impulse of force $0.2\ \mathrm{Ns}$ is applied to end $B.$ The time taken by the rod to turn through at right angles will be $\frac{\pi}{\mathrm{x}}\ \mathrm{s}$, where X=____
$4$
$5$
$6$
$7$
A particle of mass $m = 5$ is moving with a uniform speed $v = 3\sqrt 2$ in the $XOY$ plane along the line $Y = X + 4$ . The magnitude of the angular momentum of the particle about the origin is .......
A particle moves with a constant velocity in $X-Y$ plane. Its possible angular momentum w.r.t. origin is
A small mass $m$ is attached to a massless string whose other end is fixed at $P$ as shown in figure. The mass is undergoing circular motion in $x-y$ plane with centre $O$ and constant angular speed $\omega $ . If the angular momentum of the system, calculated about $O$ and $P$ and denoted by $\vec L_o$ and $\vec L_p$ respectively, then
Why $\vec v \times \vec p = 0$ for rotating particle ?
A $bob$ of mass $m$ attached to an inextensible string of length $l$ is suspended from a vertical support. The $bob$ rotates in a horizontal circle with an angular speed $\omega\, rad/s$ about the vertical. About the point of suspension