$500 \,N \,m ^{-1}$ कमानी स्थिरांक किसी कमानी से $5\, kg$ संहति का कोई कॉलर जुड़ा है जो एक क्षेतिज छड़ पर बिना किसी घर्षण के सरकता है । कॉलर को उसकी साम्यावस्था की स्थिति से $10.0 \,cm$ विस्थापित करके छोड दिया जाता है । कॉलर के
$(a)$ दोलन का आवर्तकाल
$(b)$ अधिकतम चाल तथा
$(c)$ अधिकतम त्वरण परिकलित कीजिए
$(a)$ The period of oscillation
$T=2 \pi \sqrt{\frac{m}{k}}=2 \pi \sqrt{\frac{5.0\, kg }{500\,N\,m^{-1}}}$
$=(2 \pi / 10)\, s$
$=0.63 \,s$
$(b)$ The velocity of the collar executing $SHM$ is given by
$v(t)=-A \omega \sin (\omega t+\phi)$
The maximum speed is given by,
$v_{m}=A \omega$
$=0.1 \times \sqrt{\frac{k}{m}}$
$=0.1 \times \sqrt{\frac{500\, N m ^{-1}}{5\, kg }}$
$=1 \,m s ^{-1}$
and it occurs at $x=0$
$(c)$ The acceleration of the collar at the displacement $x(t)$ from the equilibrium is given by,
$a(t) =-\omega^{2} x(t)$
$=-\frac{k}{m} x(t)$
Therefore, the maximum acceleration is $a_{\max }=\omega^{2} A$
$=\frac{500\, N \,m ^{-1}}{5 \,kg } \times 0.1 \,m$
$=10\, m s ^{-2}$
and it occurs at the extremities.
एक द्रव्यमान $m$, समान लम्बाई की दो स्प्रिंगों से लटका हुआ है। स्प्रिंगों के बल नियतांक क्रमश:${k_1}$ एवं ${k_2}$ हैं। जब पिण्ड को ऊध्र्वाधर दिशा में दोलन कराया जाता है, तो उसका आवर्तकाल होगा
किसी नगण्य द्रव्यमान के स्रिंग से लटकाये गये $M$ द्रव्यमान का दोलनकाल $T$ है। यदि इसके साथ ही एक अन्य $M$ द्रव्यमान लटका दिया जाय तो दोलनकाल हो जायेगा
किसी स्प्रिंग से लटका हुआ $m$ द्रव्यमान $2\, sec$ में एक दोलन पूर्ण करता है यदि द्रव्यमान में $2 \,kg$ की वृद्धि कर दी जाये तो आवर्तकाल में $1\, sec$ की वृद्धि हो जाती है। द्रव्यमान $m$ है .... $kg$
जब एक स्प्रिंग् पर $0.50$ किग्रा का भार लटकाया जाता है तब उसमें विस्थापन $0.20$ मीटर का हो जाता है। यदि इस स्प्रिंग् पर $0.25$ किग्रा का भार लटकाया जाये तो इसके दोलनों की आवृत्ति.... $\sec$ होगी $(g = 10$ मी/सै$^{2}$)
एक द्रव्यमान-रहित स्प्रिंग, जिसका द्रढ़ता गुणांक (stiffness constant) $k$ है, के एक छोर पर $M$ द्रव्यमान का एक गुटका जुडा है, तथा दूसरे छोर को द्रढ़ दीवार से जोड़ा गया है। यह गुटका एक समतल घर्षण-रहित सतह पर एक संतुलित स्थिति $x_0$ के गिर्द छोटे आयाम $A$ से दोलन करता है। यहाँ दो परिस्थितियां मानिए : ($i$) जब गुटका $x_0^6$ पर है और ($ii$) जब गुटका $x=x_0+A$ पर है। दोनों परिस्थितियों में द्रव्यमान $m( < M)$ के एक कण को गुटके पर धीरे से इस प्रकार रखा जाता है की वंह तुरंत गुटके से चिपक जाता है। कण को गुटके के ऊपर रखने के बाद गति के बारे में निम्नलिखित में से कौनसा/कौनसे कथन सत्य है/हैं?
$(A)$ पहली परिस्थिति में दोलन का आयाम $\sqrt{\frac{M}{m+M}}$ भाज्य (factor) से परिवर्तित होता है, जबकि दूसरी परिस्थिति में यह अपरिवर्तित रहता है
$(B)$ दोनों परिस्थितियों में दोलन का अंतिम समयकाल समान है,
$(C)$ दोनों परिस्थितियों में सम्पूर्ण ऊर्जा कम हो जाती है
$(D)$ सम्मिलित द्रव्यमानों की $x_0$ पर तान्क्षणिक गति दोनों परिस्थितियों में कम हो जाती है