एक स्प्रिंग $10$ न्यूटन के बल से $5$ से.मी. खिंची होती है। जब $2$ कि.ग्रा. द्रव्यमान को इससे लटकाया जाता है, तो दोलन का आवर्तकाल होता है : (सेकण्ड में)
$0.0628$
$6.28$
$3.14$
$0.628$
बल नियतांक $k$ वाली किसी स्प्रिंग के एक सिरे को एक ऊध्र्वाधर दीवार से कस कर दूसरे सिरे पर $m$ द्रव्यमान का एक गुटका जोड़ा जाता है जो कि एक चिकने क्षैतिज तल पर रखा है गुटके के दूसरे ओर ${x_0}$ दूरी पर एक और ऊध्र्वाधर दीवार है। यदि स्प्रिंग को $2{x_0}$ लम्बाई से संपीड़ित करके छोड़ दें तो गुटका कितने समय पश्चात् दीवार से टकरायेगा
$m$ द्रव्यमान का पिण्ड, $k$ बल नियतांक वाली स्प्रिंग् पर आवर्तकाल $T$ के दोलन करता है। यदि स्प्रिंग् के दो बराबर भाग करके उन्हें समान्तर में चित्रानुसार जोड़कर उसी द्रव्यमान को फिर से दोलन कराए जाएँ तब आवर्तकाल होगा
समान द्रव्यमान के दो कण $A$ और $B$ दो द्रव्यमानहीन कमानियों, जिनके कमानी नियतांक क्रमशः $K _{1}$ और $K _{2}$ हैं, से निलंबित हैं। यदि दोलन करते समय अधिकतम वेग समान हैं, तो $A$ और $B$ के आयामों का अनुपात है।
बराबर द्रव्यमान के दो पिण्ड $M$ तथा $N$ दो द्रव्यमानहीन स्प्रिंगों से अलग-अलग लटके हैं। स्प्रिंग के बल नियतांक क्रमश: ${k_1}$ तथा ${k_2}$ है। यदि दोनों पिण्ड ऊध्र्वाधर तल में इस प्रकार कम्पन करते हैं कि इनके अधिकतम वेग बराबर हैं, तब $M$ के कम्पन के आयाम का $N$ के साथ अनुपात है
निम्न चित्र में प्रदर्शित दोनों स्प्रिंग एक समान हैं, यदि $A = 4kg$ स्प्रिंग की लम्बाई में वृद्धि $1 \,cm$ है। यदि $B = 6kg$ है तो इसके द्वारा लम्बाई में वृद्धि ..... $cm$ होगी