A $2 \,{kg}$ steel rod of length $0.6\, {m}$ is clamped on a table vertically at its lower end and is free to rotate in vertical plane. The upper end is pushed so that the rod falls under gravity, Ignoring the friction due to clamping at its lower end, the speed of the free end of rod when it passes through its lowest position is $\ldots \ldots \ldots \ldots \,{ms}^{-1}$. (Take $g = 10\, {ms}^{-2}$ )
$6$
$60$
$0.6$
$3600$
A circular disc has a mass of $1\ kg$ and radius $40\ cm$. It is rotating about an axis passing through its centre and perpendicular to its plane with a speed of $10\ rev/s$. The work done in joules in stopping it would be ...... $J$
A small object of uniform density rolls up a curved surface with an initial velocity $v$. It reaches up to a maximum height of $\frac{3 \mathrm{v}^2}{4 \mathrm{~g}}$ with respect to the initial position. The object is
An automobile engine develops $100\ kW$ when rotating at a speed of $1800\ rev/min$. What torque does it deliver .......... $N-m$
$A$ sphere of mass $M$ and radius $R$ is attached by a light rod of length $l$ to $a$ point $P$. The sphere rolls without slipping on a circular track as shown. It is released from the horizontal position. the angular momentum of the system about $P$ when the rod becomes vertical is :
A thin uniform rod of length $2\,m$. cross sectional area ' $A$ ' and density ' $d$ ' is rotated about an axis passing through the centre and perpendicular to its length with angular velocity $\omega$. If value of $\omega$ in terms of its rotational kinetic energy $E$ is $\sqrt{\frac{\alpha E}{ Ad }}$ then the value of $\alpha$ is $...........$