The total kinetic energy of a body of mass $10\ kg$ and radius $0.5\ m$ moving with a velocity of $2\ m/s$ without slipping is $32.8\ joule$. The radius of gyration of the body is .......... $m$
$0.25$
$0.2$
$0.5$
$ 0.4$
A disc of radius $R$ and mass $M$ is rolling horizontally without slipping with speed $v$. It then moves up an inclined smooth surface as shown in figure. The maximum height that the disc can go up the incline is:
A flywheel of moment of inertia $0.32\ kg-m^2$ is rotated steadily at $120\,rad/\sec $ by a $50\,W$ electric motor. The kinetic energy of the flywheel is.......... $J$
Two bodies, a ring and a solid cylinder of same material are rolling down without slipping an inclined plane. The radii of the bodies are same. The ratio of velocity of the centre of mass at the bottom of the inclined plane of the ring to that of the cylinder is $\frac{\sqrt{x}}{2}$. Then, the value of $x$ is .... .
A metal sphere of radius $r$ and specific heat $S$ is rotated about an axis passing through its centre at a speed of $f$ rotations per second. It is suddenly stopped at $50\%$ of its energy is used in increasing its temperature. Then the rise in temperature of the sphere is
A student of mass $M$ is $1.5 \,m$ tall and has her centre of mass $1 \,m$ above ground when standing straight. She wants to jump up vertically. To do so. she bends her knees so that her centre of mass is lowered by $0.2 \,m$ and then pushes the ground by a constant force F. As a result, she jumps up such that the maximum height of her feet is $0.3 \,m$ above ground. The ratio $F / Mg$ is