6.System of Particles and Rotational Motion
medium

The total kinetic energy of a body of mass $10\ kg$ and radius $0.5\ m$ moving with a velocity of $2\ m/s$ without slipping is $32.8\ joule$.  The radius of gyration of the body is  .......... $m$

A

$0.25$

B

$0.2$

C

$0.5$

D

$  0.4$

Solution

Given total $\mathrm{KE}(\mathrm{E})=32.8 \mathrm{J},$ mass $(\mathrm{m})=10 \mathrm{kg}$

velocity $(v)=2 m / s .$ Radius $(r)=0.5 \mathrm{m}$

NOW

Total $\mathrm{KE}(\mathrm{E})=\mathrm{E}_{\text {transalational }}+\mathrm{E}_{\text {rotational }}$

$\Rightarrow E=\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2}$

$\Rightarrow \mathrm{E}=\frac{1}{2} m v^{2}+\frac{1}{2} m k^{2}\left(\frac{v}{r}\right)^{2},$ where $\mathrm{k}=$ radius of gyration

$\Rightarrow 32.8=\frac{1}{2} \times 10 \times 2^{2}+\frac{1}{2} \times 10 \times k^{2}\left(\frac{2}{0.5}\right)^{2}$

$\Rightarrow 32.8=20+80 \times k^{2}$

$\Rightarrow k^{2}=\frac{12.8}{80}=0.16$

$\Rightarrow k=0.4 m$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.