A uniform thin wooden plank $A B$ of length $L$ and mass $M$ is kept on a table with its $B$ end slightly outside the edge of the table. When an impulse $J$ is given to the end $B$, the plank moves up with centre of mass rising a distance $h$ from the surface of the table. Then,
$h > 9 J^{2} / 8 M^{2} g$
$h=J^{2} / 2 M^{2} g$
$J^{2} / 2 M^{2} g < h < 9 J^{2} / 8 M^{2} g$
$h < J^{2} / 2 M^{2} g$
The angular velocity of a body is $\mathop \omega \limits^ \to = 2\hat i + 3\hat j + 4\hat k$ and a torque $\mathop \tau \limits^ \to = \hat i + 2\hat j + 3\hat k$ acts on it. The rotational power will be .......... $W$
A rolling wheel of $12 \,kg$ is on an inclined plane at position $P$ and connected to a mass of $3 \,kg$ through a string of fixed length and pulley as shown in figure. Consider $PR$ as friction free surface. The velocity of centre of mass of the wheel when it reaches at the bottom $Q$ of the inclined plane $P Q$ will be $\frac{1}{2} \sqrt{ xgh } \,m / s$. The value of $x$ is.............
$A$ ring of mass $m$ and radius $R$ has three particles attached to the ring as shown in the figure. The centre of the ring has a speed $v_0$. The kinetic energy of the system is: (Slipping is absent)
Two bodies, a ring and a solid cylinder of same material are rolling down without slipping an inclined plane. The radii of the bodies are same. The ratio of velocity of the centre of mass at the bottom of the inclined plane of the ring to that of the cylinder is $\frac{\sqrt{x}}{2}$. Then, the value of $x$ is .... .
A thin and uniform rod of mass $M$ and length $L$ is held vertical on a floor with large friction. The rod is released from rest so that it falls by rotating about its contact-point with the floor without slipping. Which of the following statement($s$) is/are correct, when the rod makes an angle $60^{\circ}$ with vertical ? [ $g$ is the acceleration due to gravity]
$(1)$ The radial acceleration of the rod's center of mass will be $\frac{3 g }{4}$
$(2)$ The angular acceleration of the rod will be $\frac{2 g }{ L }$
$(3)$ The angular speed of the rod will be $\sqrt{\frac{3 g}{2 L}}$
$(4)$ The normal reaction force from the floor on the rod will be $\frac{ Mg }{16}$