A $600\,pF$ capacitor is charged by $200\,V$ supply. It is then disconnected from the supply and is connected to another uncharged $600\,pF$ capacitor. Electrostatic energy lost in the process is $.........\,\mu J$.
$6$
$5$
$4$
$3$
A $20\,F$ capacitor is charged to $5\,V$ and isolated. It is then connected in parallel with an uncharged $30\,F$ capacitor. The decrease in the energy of the system will be.......$J$
In the figure shown, after the switch $‘S’$ is turned from position $‘A’$ to position $‘B’$, the energy dissipated in the circuit in terms of capacitance $‘C’$ and total charge $‘Q’$ is
The energy stored in a condenser is in the form of
A capacitor of capacitance $C$ is charged with the help of a $200 \,V$ battery. It is then discharged through a small coil of resistance wire embedded in a thermally insulated block of specific heat capacity $2.5 \times 10^2 \,J / kg$ and mass $0.1 \,kg$. If the temperature of the block rises by $0.4 \,K$, the value of $C$ is
The plates of a parallel plate capacitor have an area of $90 \,cm ^{2}$ each and are separated by $2.5\; mm .$ The capacitor is charged by connecting it to a $400\; V$ supply.
$(a)$ How much electrostatic energy is stored by the capacitor?
$(b)$ View this energy as stored in the electrostatic field between the plates, and obtain the energy per unit volume $u$. Hence arrive at a relation between $u$ and the magnitude of electric field $E$ between the plates.