A $2\, Kg$ block moving with $10\, m/s$ strikes a spring of constant $\pi ^2 N/m$ attached to $2\, Kg$ block at rest kept on a smooth floor, the velocity of the rear $2\, kg$ block after it separates from the spring will be ..... $m/s$
$0$
$5$
$10 $
$7.5$
A $5\; kg$ collar is attached to a spring of spring constant $500\;N m ^{-1} .$ It slides without friction over a hortzontal rod. The collar is displaced from its equilibrium position by $10.0\; cm$ and released. Calculate
$(a)$ the period of oscillation.
$(b)$ the maximum speed and
$(c)$ maximum acceleration of the collar.
The frequency of oscillation of the springs shown in the figure will be
In the given figure, a body of mass $M$ is held between two massless springs, on a smooth inclined plane. The free ends of the springs are attached to firm supports. If each spring has spring constant $k,$ the frequency of oscillation of given body is :
A weightless spring of length $60\, cm$ and force constant $200\, N/m$ is kept straight and unstretched on a smooth horizontal table and its ends are rigidly fixed. A mass of $0.25\, kg$ is attached at the middle of the spring and is slightly displaced along the length. The time period of the oscillation of the mass is
A mass $\mathrm{m}$ is suspended from a spring of negligible mass and the system oscillates with a frequency $f_1$. The frequency of oscillations if a mass $9 \mathrm{~m}$ is suspended from the same spring is $f_2$. The value of $\frac{f_1}{f_{.2}}$ is_____________.