A spring is stretched by $5 \,\mathrm{~cm}$ by a force $10 \,\mathrm{~N}$. The time period of the oscillations when a mass of $2 \,\mathrm{~kg}$ is suspended by it is :(in $s$)
$0.0628$
$6.28$
$3.14$
$0.628$
The drawing shows a top view of a frictionless horizontal surface, where there are two indentical springs with particles of mass $m_1$ and $m_2$ attached to them. Each spring has a spring constant of $1200\ N/m.$ The particles are pulled to the right and then released from the positions shown in the drawing. How much time passes before the particles are again side by side for the first time if $m_1 = 3.0\ kg$ and $m_2 = 27 \,kg \,?$
A block of mass $m$ is suspended separately by two different springs have time period $t_1$ and $t_2$ . If same mass is connected to parallel combination of both springs, then its time period will be
Consider two identical springs each of spring constant $k$ and negligible mass compared to the mass $M$ as shown. Fig. $1$ shows one of them and Fig. $2$ shows their series combination. The ratios of time period of oscillation of the two $SHM$ is $\frac{ T _{ b }}{ T _{ a }}=\sqrt{ x },$ where value of $x$ is
(Round off to the Nearest Integer)
Assuming all pulleys, springs and string massless. Consider all surface smooth. Choose the correct statement $(s)$
A spring has spring constant $k$ and $l$. If it cut into piece spring in the proportional to $\alpha : \beta : \gamma $ then obtain the spring constant of every piece in term of spring constant of original spring (Here, $\alpha $, $\beta $ and $\gamma $ are integers)