A bakelite beaker has volume capacity of $500\, cc$ at $30^{\circ} C$. When it is partially filled with $V _{ m }$ volume (at $30^{\circ}$ ) of mercury, it is found that the unfilled volume of the beaker remains constant as temperature is varied. If $\gamma_{\text {(beaker) }}=6 \times 10^{-6}{ }^{\circ} C ^{-1}$ and $\gamma_{(\text {mercury })}=1.5 \times 10^{-4}{ }^{\circ} C ^{-1},$ where $\gamma$ is the coefficient of volume expansion, then $V _{ m }($in $cc )$ is close to

  • [JEE MAIN 2020]
  • A

    $20$

  • B

    $25$

  • C

    $35$

  • D

    $27$

Similar Questions

Two rods of different materials having coefficient of linear expansion $\alpha_1$and $\alpha_2$ and  Young's modulii $Y_1$ and $Y_2$ respectively are fixed between two rigid massive walls. The rods are heated such that they undergo the same increase in temperature. There is no bending of rods. If  $\alpha_1:\alpha_2= 2 : 3$, the thermal stress developed in two rods are equal provided $Y_1 : Y_2$ is equal to

Two rods, one of aluminum and the other made of steel, having initial length ${l_1}$ and ${l_2}$ are connected together to form a single rod of length ${l_1} + {l_2}$. The coefficients of linear expansion for aluminum and steel are ${\alpha _a}$ and ${\alpha _s}$ respectively. If the length of each rod increases by the same amount when their temperature are raised by ${t^o}C$, then find the ratio $\frac{{{l_1}}}{{({l_1} + {l_2})}}$

  • [IIT 2003]

In a thermostat two metal strips are used, which have different ............

An open vessel is filled completely with oil which has same coefficient of volume expansion as that of the vessel. On heating both oil and vessel,

The volume of a gas at $20°C$ is $100 \,cm^3$ at normal pressure. If it is heated to $100°C$, its volume becomes $125\, cm^3$ at the same pressure, then volume coefficient of the gas at normal pressure is