A ball is hit by a batsman at an angle of $37^o$ as shown in figure. The man standing at $P$ should run at what minimum velocity so that he catches the ball before it strikes the ground. Assume that height of man is negligible in comparison to maximum height of projectile. ........ $ms^{-1}$
$3 $
$5$
$9 $
$12 $
A ball is thrown at different angles with the same speed $u$ and from the same point. It has the same range in both cases. If $y_1$ and $y_2$ be the heights attained in the two cases, then $y_1+y_2$ equals to
A ball of mass $160\, g$ is thrown up at an angle of $60^{\circ}$ to the horizontal at a speed of $10 \,m / s$. The angular momentum of the ball at the highest point of the trajectory with respect to the point from which the ball is thrown is nearly $\left(g=10\, m / s ^{2}\right)$ (in $kgm ^{2} / s$)
A ball is projected from the ground with a speed $15 \,ms ^{-1}$ at an angle $\theta$ with horizontal so that its range and maximum height are equal, then $tan\,\theta$ will be equal to
The ratio of the speed of a projectile at the point of projection to the speed at the top of its trajectory is $x$. The angle of projection with the horizontal is