A ball is projected from the ground with a speed $15 \,ms ^{-1}$ at an angle $\theta$ with horizontal so that its range and maximum height are equal, then $tan\,\theta$ will be equal to
$\frac{1}{4}$
$\frac{1}{2}$
$2$
$4$
Which of the following sets of factors will affect the horizontal distance covered by an athlete in a long-jump event
Four bodies $P, Q, R$ and $S$ are projected with equal velocities having angles of projection $15^{\circ}, 30^{\circ}, 45^{\circ}$ and $60^{\circ}$ with the horizontals respectively. The body having shortest range is
From the top of a tower of height $40\, m$, a ball is projected upwards with a speed of $20\, m/s$ at an angle $30^o$ to the horizontal. The ball will hit the ground in time ......... $\sec$ (Take $g = 10\, m/s^2$)
Given that $u_x=$ horizontal component of initial velocity of a projectile, $u_y=$ vertical component of initial velocity, $R=$ horizontal range, $T=$ time of flight and $H=$ maximum height of projectile. Now match the following two columns.
Column $I$ | Column $II$ |
$(A)$ $u_x$ is doubled, $u_y$ is halved | $(p)$ $H$ will remain unchanged |
$(B)$ $u_y$ is doubled $u_x$ is halved | $(q)$ $R$ will remain unchanged |
$(C)$ $u_x$ and $u_y$ both are doubled | $(r)$ $R$ will become four times |
$(D)$ Only $u_y$ is doubled | $(s)$ $H$ will become four times |
A projectile crosses two walls of equal height $H$ symmetrically as shown The velocity of projection is........ $ms^{-1}$