A ball is projected from a point $O$ as shown in figure. It will strike the ground after ........ $s$ $\left(g=10 \,m / s ^2\right)$
$4$
$3$
$2$
$5$
At what angle the particle should be projected to cover maximum range ?
A stone is projected from a point on the ground so as to hit a bird on the top of a vertical pole of height $h$ and then attain a maximum height $2 h$ above the ground. If at the instant of projection the bird flies away horizontally with a uniform speed and if the stone hits the bird while descending, then the ratio of the speed of the bird to the horizontal speed of the stone is
A particle is projected with a velocity of $30\,m / s$, at an angle of $\theta_0=\tan ^{-1}\left(\frac{3}{4}\right)$ After $1\,s$, the particle is moving at an angle $\theta$ to the horizontal, where $\tan \theta$ will be equal to $\left(g=10\,m / s ^2\right)$
A ball is projected with velocity ${V_o}$ at an angle of elevation $30^°$. Mark the correct statement
A ball is projected from ground at an angle $45^{\circ}$ with horizontal from distance $d_1$ from the foot of a pole and just after touching the top of pole it the falls on ground at distance $d_2$ from pole on other side, the height of pole is ...........