A ball of mass $1\, g$ and charge ${10^{ - 8}}\,C$ moves from a point $A$. where potential is $600\, volt$ to the point $B$ where potential is zero. Velocity of the ball at the point $B$ is $20\, cm/s$. The velocity of the ball at the point $A$ will be

  • A

    $22.8\, cm/s$

  • B

    $228\, cm/s$

  • C

    $16.8\, m/s$

  • D

    $168\, m/s$

Similar Questions

A bullet of mass $m$ and charge $q$ is fired towards a solid uniformly charged sphere of radius $R$ and total charge $+ q$. If it strikes the surface of sphere with speed $u$, find the minimum speed $u$ so that it can penetrate through the sphere. (Neglect all resistance forces or friction acting on bullet except electrostatic forces)

If identical charges $( - q)$ are placed at each corner of a cube of side $b$, then electric potential energy of charge $( + q)$ which is placed at centre of the cube will be

  • [AIPMT 2002]

Two points $P$ and $Q$ are maintained at the potentials of $10\, V$ and $-4\,V$, respectively. The work done in moving $100$ electrons from $P$ and $Q$ is

Two identical particles of mass $m$ and charge $q$ are shot at each other from a very great distance with an initial speed $v$. The distance of closest approach of these charges is

  • [KVPY 2010]

This questions has statement$-1$ and statement$-2$. Of the four choices given after the statements, choose the one that best describe the two statements.
An insulating solid sphere of radius $R$ has a uniformly
positive charge density $\rho$. As a result of this uniform charge distribution there is a finite value of electric potential at the centre of the sphere, at the surface of the sphere and also at a point out side the sphere. The electric potential at infinite is zero.

Statement$ -1$ : When a charge $q$ is take from the centre of the surface of the sphere its potential energy changes by  $\frac{{q\rho }}{{3{\varepsilon _0}}}$

Statement$ -2$ : The electric field at a distance $r(r < R)$  from centre of the sphere is $\frac{{\rho r}}{{3{\varepsilon _0}}}$

  • [AIEEE 2012]