Gujarati
Hindi
9-1.Fluid Mechanics
medium

A ball of mass $m$ and radius $ r $ is gently released in a viscous liquid. The mass of the liquid displaced by it is $m' $ such that $m > m'$. The terminal velocity is proportional to

A

$\frac{{m - m'}}{r}$

B

$\frac{{m + m'}}{r}$

C

$\frac{{(m + m')}}{{{r^2}}}$

D

$(m - m') r^2$

Solution

The mass of ball is m and radius 8 .

The mass of the liquid displaced by it s The mass

$V_{t}=\frac{2}{9} \gamma^{2} \frac{(\text { foon }-\text { Peiquid })}{n} \times g$

$V_{+} \alpha \gamma^{2}\left(\rho_{\text {ball }}-\right.$ Seiquid $)$

$\rho_{\text {ball }}=\frac{m}{\frac{4 \pi r^{3}}{3}}=\frac{3 m}{4 \pi \gamma^{3}}$

$f_{\text {etquid }}=\rho_{l}$

$v \times f_{1} \times g=m g$

$\rho_{l}=\frac{m}{v}=\frac{3 m}{4 \pi r^{3}}$

Now $v_{t} \times \gamma^{2}\left(\frac{3 m}{4 \pi r^{3}}-\frac{3 m^{\prime}}{4 \pi r^{3}}\right)$

$v_{t} \times \frac{3}{4 \pi}\left(\frac{m}{\gamma}-\frac{-m^{\prime}}{\gamma}\right)$

$v_{t} \propto \frac{m-m^{\prime}}{\gamma}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.