A cylindrical vessel filled with water is released on an inclined surface of angle $\theta$ as shown in figure.The friction coefficient of surface with vessel is $\mu( < \tan \theta)$.Then the contact angle made by the surface of water with the incline will be

214138-q

  • A

    $\tan ^{-1} \mu$

  • B

    $\theta-\tan ^{-1} \mu$

  • C

    $\theta+\tan ^{-1} \mu$

  • D

    $\cot ^{-1} \mu$

Similar Questions

A small spherical ball of radius $r$, falling through a viscous medium of negligible density has terminal velocity ' $v$ '. Another ball of the same mass but of radius $2 r$, falling through the same viscous medium will have terminal velocity:

  • [JEE MAIN 2024]

A spherical solid ball of volume $V$ is made of a material of density $\rho_1$ . It is falling through a liquid of density $\rho_2 (\rho_2 < \rho_1 )$. Assume that the liquid applies a viscous force on the ball that is proportional to the square of its speed $v$, i.e., $F_{viscous}= -kv^2 (k >0 )$,The terminal speed of the ball is 

  • [AIEEE 2008]

The terminal velocity of a small sphere of radius $a$ in a viscous liquid is proportional to

  • [AIEEE 2012]
  • [AIIMS 2004]

There is a $1\, mm$ thick layer of glycerine between a flat plate of area $100\, cm^2$ and a big plate. If the coefficient of viscosity of glycerine is $1.0\, kg\, (m-s)$, then ....... $N$ force is required to move the plate with a velocity of $7\, cm/s$ .