8.Mechanical Properties of Solids
medium

An aluminum rod (Young's modulus $ = 7 \times {10^9}\,N/{m^2})$ has a breaking strain of $0.2\%$. The minimum cross-sectional area of the rod in order to support a load of ${10^4}$Newton's is

A

$1 \times {10^{ - 2}}\,{m^2}$

B

$1.4 \times {10^{ - 3}}\,{m^2}$

C

$3.5 \times {10^{ - 3}}\,{m^2}$

D

$7.1 \times {10^{ - 4}}\,{m^2}$

Solution

(d) $Y = \frac{{F/A}}{{{\rm{strain}}}} \Rightarrow A = \frac{F}{{Y \times {\rm{strain}}}}$= $\frac{{{{10}^4}}}{{7 \times {{10}^9} \times 0.002}}$

= $\frac{1}{{14}} \times {10^{ – 2}}$$ = 7.1 \times {10^{ – 4}}{m^2}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.