Stokes' law states that the viscous drag force $F$ experienced by a sphere of radius $a$, moving with a speed $v$ through a fluid with coefficient of viscosity $\eta$, is given by $F=6 \pi \eta a v$.If this fluid is flowing through a cylindrical pipe of radius $r$, length $l$ and a pressure difference of $p$ across its two ends, then the volume of water $V$ which flows through the pipe in time $t$ can be written as
$\frac{v}{t}=k\left(\frac{p}{l}\right)^a \eta^b r^c$
where, $k$ is a dimensionless constant. Correct value of $a, b$ and $c$ are
A length-scale $(l)$ depends on the permittivity $(\varepsilon)$ of a dielectric material. Boltzmann constant $\left(k_B\right)$, the absolute temperature $(T)$, the number per unit volune $(n)$ of certain charged particles, and the charge $(q)$ carried by each of the particless. Which of the following expression($s$) for $l$ is(are) dimensionally correct?
($A$) $l=\sqrt{\left(\frac{n q^2}{\varepsilon k_B T}\right)}$
($B$) $l=\sqrt{\left(\frac{\varepsilon k_B T}{n q^2}\right)}$
($C$)$l=\sqrt{\left(\frac{q^2}{\varepsilon n^{2 / 3} k_B T}\right)}$
($D$) $l=\sqrt{\left(\frac{q^2}{\varepsilon n^{1 / 3} k_B T}\right)}$
A physcial quantity $x$ depends on quantities $y$ and $z$ as follows: $x = Ay + B\tan Cz$, where $A,\,B$ and $C$ are constants. Which of the following do not have the same dimensions
If force $F$ , velocity $V$ and time $T$ are taken as fundamental units then dimension of force in the pressure is