The quantity $X = \frac{{{\varepsilon _0}LV}}{t}$: ${\varepsilon _0}$ is the permittivity of free space, $L$ is length, $V$ is potential difference and $t$ is time. The dimensions of $X$ are same as that of
The displacement of a progressive wave is represented by $y = A\,sin \,(\omega t - kx)$ where $x$ is distance and t is time. Write the dimensional formula of $(i)$ $\omega $ and $(ii)$ $k$.
In the relation $P = \frac{\alpha }{\beta }{e^{ - \frac{{\alpha Z}}{{k\theta }}}}$ $P$ is pressure, $Z$ is the distance, $k$ is Boltzmann constant and $\theta$ is the temperature. The dimensional formula of $\beta$ will be