The entropy of any system is given by
${S}=\alpha^{2} \beta \ln \left[\frac{\mu {kR}}{J \beta^{2}}+3\right]$
Where $\alpha$ and $\beta$ are the constants. $\mu, J, K$ and $R$ are no. of moles, mechanical equivalent of heat, Boltzmann constant and gas constant repectively. [Take ${S}=\frac{{dQ}}{{T}}$ ]
Choose the incorrect option from the following:
${S}, \beta, {k}$ and $\mu {R}$ have the same dimensions.
$\alpha$ and ${J}$ have the same dimensions.
${S}$ and $\alpha$ have different dimensions.
$\alpha$ and ${k}$ have the same dimensions.
The dimensions of $\left(\frac{ B ^{2}}{\mu_{0}}\right)$ will be.
(if $\mu_{0}$ : permeability of free space and $B$ : magnetic field)
$A, B, C$ and $D$ are four different physical quantities having different dimensions. None of them is dimensionless. But we know that the equation $AD = C\, ln\, (BD)$ holds true. Then which of the combination is not a meaningful quantity ?
Match List $I$ with List $II$
LIST$-I$ | LIST$-II$ |
$(A)$ Torque | $(I)$ $ML ^{-2} T ^{-2}$ |
$(B)$ Stress | $(II)$ $ML ^2 T ^{-2}$ |
$(C)$ Pressure of gradient | $(III)$ $ML ^{-1} T ^{-1}$ |
$(D)$ Coefficient of viscosity | $(IV)$ $ML ^{-1} T ^{-2}$ |
Choose the correct answer from the options given below
Consider two physical quantities A and B related to each other as $E=\frac{B-x^2}{A t}$ where $E, x$ and $t$ have dimensions of energy, length and time respectively. The dimension of $A B$ is
Dimensional formula for torque is