A beam of metal supported at the two ends is loaded at the centre. The depression at the centre is proportional to

  • A

    ${Y^2}$

  • B

    $Y$

  • C

    $1/Y$

  • D

    $1/{Y^2}$

Similar Questions

An area of cross-section of rubber string is $2\,c{m^2}$. Its length is doubled when stretched with a linear force of $2 \times {10^5}$dynes. The Young's modulus of the rubber in $dyne/c{m^2}$ will be

Density of rubber is $​d$​. $​ A$​ thick rubber cord of length $​L$​ and cross-section area $​A$​ undergoes elongation under its own weight on suspending it. This elongation is proportional to

Stress required in a wire to produce $0.1\%$ strain is $4 \times10^8\, N/m^2$. Its yound modulus is $Y_1$. If stress required in other wire to produce $0.3\%$ strain is $6 \times 10^8\, N/m^2$. Its young modulus is $Y_2$. Which relation is correct

A steel rod of length $1\,m$ and area of cross section $1\,cm^2$ is heated from $0\,^oC$ to $200\,^oC$ without being allowed to extend or bend. Find the tension produced in the rod $(Y = 2.0 \times 10^{11}\,Nm^{-2}$,  $\alpha = 10^{-5} C^{-1})$ 

The temperature of a wire of length $1$ metre and area of cross-section $1\,c{m^2}$ is increased from $0°C$ to $100°C$. If the rod is not allowed to increase in length, the force required will be $(\alpha = {10^{ - 5}}/^\circ C$ and $Y = {10^{11}}\,N/{m^2})$