આકૃતિમાં દર્શાવ્યા મુજબ $\sqrt{2} \,kg$ દળ વાળા એક બ્લોકને એક ઢોળાવવાળી લીસી સપાટીની ટોચ પરથી છોડવામાં આવે છે. જો સ્પ્રિંગ નો સ્પ્રિંગ અચળાંક $100 \,N / m$ હોય અને ને $1 \,m$ સંકોચાયા બાદ બ્લોક સ્થિર સ્થિતિમાં આવતો હોય તો સ્થિર થયા પહેલાં બ્લોક કાપેલ અંતર ...... $m$ છે.
$1$
$1.25$
$5$
$2.5$
$M $ દળનો બ્લોક $ K$ બળ અચળાંક ધરાવતી સ્પિંગ્ર સાથે અથડાવાથી સ્પિંગ્રનું સંકોચન $ L$ થાય છે.તો બ્લોકનું અથડામણ પછીનું મહત્તમ વેગમાન કેટલું થાય?
$\frac {k}{m}$ નું પારિમાણિક સૂત્ર લખો.
સ્થિતિસ્થાપક સ્પ્રિંગના છેડે બાંધેલ બ્લોકને ખેંચીએ કે દબાવીએ ત્યારે યાંત્રિકઊર્જા સંરક્ષણનો સિદ્ધાંત પળાય છે તેમ બતાવો.
$100\, m$ ઊંચાઈએ થી $1\,kg$ દળ ધરાવતા પદાર્થને એક $3\, kg$ દળ ધરાવતા આધાર (platform) , કે જે $k=1.25 \times 10^6\,N/m$ જેટલા સ્પ્રિંગ અચળાંક ધરાવતી સ્પ્રિંગ પર સ્થાપેલ છે, તેના પર મુક્ત પતન કરાવવામાં આવે છે. પદાર્થ આધાર સાથે જોડાઈ જાય છે અને સ્પ્રિંગનું મહત્તમ સંકોચન $x$ જેટલું માલુમ પડે છે. $g=10\, ms^{-2}$ લઇ $x$ નું મૂલ્ય કેટલા ............ $\mathrm{cm}$ થશે?
$0.5\, kg$ દળ અને $12\, m / sec$ જેટલી પ્રારંભિક ઝડપ સાથે ગતિ કરતું ચોસલું તેની ઝડ૫ અડધી થાય તે પહેલાં એક સ્પ્રિંગ ને $30\, cm$ જેટલી દબાવે છે. સ્પ્રિંગનો સ્પ્રિંગ અચળાંક........$N / m$ હશે.