Gujarati
8.Mechanical Properties of Solids
normal

A block of weight $100 N$ is suspended by copper and steel wires of same cross sectional area $0.5 cm ^2$ and, length $\sqrt{3} m$ and $1 m$, respectively. Their other ends are fixed on a ceiling as shown in figure. The angles subtended by copper and steel wires with ceiling are $30^{\circ}$ and $60^{\circ}$, respectively. If elongation in copper wire is $\left(\Delta \ell_{ C }\right)$ and elongation in steel wire is $\left(\Delta \ell_{ s }\right)$, then the ratio $\frac{\Delta \ell_{ C }}{\Delta \ell_{ S }}$ is. . . . . .

[Young's modulus for copper and steel are $1 \times 10^{11} N / m ^2$ and $2 \times 10^{11} N / m ^2$ respectively]

A

$1$

B

$0$

C

$2$

D

$3$

(IIT-2019)

Solution

Let $T_S=$ tension in steel wire $T _{ C }=$ Tension in copper wire in $x$ direction

$T _{ C } \cos 30^{\circ}= T _{ S } \cos 60^{\circ}$

$T _{ C } \times \frac{\sqrt{3}}{2}= T _{ S } \times \frac{1}{2}$

$\sqrt{3} T _{ C }= T _{ S } \ldots . \text { (i) }$

in $y$ direction

$T _{ C } \sin 30^{\circ}+ T _{ S } \sin 60^{\circ}=100$

$\frac{ T _{ C }}{2}+\frac{ T _{ S } \sqrt{3}}{2}=100 \ldots . \text { (ii) }$

Solving equation $(i)$ & $(ii)$

$T _{ C }=50 N$

$T _{ S }=50 \sqrt{3} N$

We know

$\Delta L =\frac{ FL }{ AY }$

$=\frac{\Delta L _{ C }}{\Delta L _{ S }}=\frac{ T _{ C } L _{ C }}{ A _{ C } Y _{ C }} \times \frac{ A _{ S } Y _{ S }}{ T _{ S } L _{ S }}$

On solving above equation

$\frac{\Delta L _{ C }}{\Delta L _{ S }}=2$

Ans. $2.00$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.