- Home
- Standard 11
- Physics
4-1.Newton's Laws of Motion
normal
A block placed on a rough inclined plane of inclination $\left(\theta=30^{\circ}\right)$ can just be pushed upwards by applying a force " $F$ " as shown. If the angle of inclination of the inclined plane is increased to $\left(\theta=60^{\circ}\right)$, the same block can just be prevented from sliding down by application of a force of same magnitude. The coefficient of friction between the block and the inclined plane is

A
$\frac{\sqrt{3}-1}{\sqrt{3}+1}$
B
$\frac{\sqrt{3}+1}{\sqrt{3}-1}$
C
$\frac{2 \sqrt{3}-1}{\sqrt{3}+1}$
D
none of these
Solution

$F=m g \sin 30^{\circ}+\mu m g \cos 30^{\circ}$
$=\frac{m g}{2}[1+\mu \sqrt{3}]$
$F+f=m g \sin 60^{\circ}$
$F=\frac{m g}{2}[\sqrt{3}-\mu]$
Now $(1)=(2)$
$1+\mu \sqrt{3}=\sqrt{3}-\mu$
$\mu=\frac{(\sqrt{3}-1)}{(\sqrt{3}+1)}$
Standard 11
Physics
Similar Questions
normal
normal