A body of mass $M$ is dropped from a height $h$ on a sand floor. If the body penetrates $x\,\,cm$ into the sand, the average resistance offered by the sand of the body is
$Mg\left( {\frac{h}{x}} \right)$
$Mg\left( {1\,+\,\frac{h}{x}} \right)$
$Mgh\,+\,Mgx$
$Mg\left( {1\,-\,\frac{h}{x}} \right)$
$ABCDE$ is a channel in the vertical plane, part $BCDE$ being circular with radius $r$ . A block is released from $A$ and slides without friction and without rolling. The block will complete the loop if $h$ is
A body of mass ${m_1}$ moving with uniform velocity of $40 \,m/s$ collides with another mass ${m_2}$ at rest and then the two together begin to move with uniform velocity of $30\, m/s$. The ratio of their masses $\frac{{{m_1}}}{{{m_2}}}$ is
Two blocks $A$ and $B$ of masses $1\,\,kg$ and $2\,\,kg$ are connected together by a spring and are resting on a horizontal surface. The blocks are pulled apart so as to stretch the spring and then released. The ratio of $K.E.s$ of both the blocks is
Work done in time $t$ on a body of mass $m$ which is accelerated from rest to a speed $v$ in time $t_1$ as a function of time $t$ is given by
Consider two carts, of masses $m$ and $2m$ , at rest on an air track. If you push both the carts for $3\,s$ exerting equal force on each, the kinetic energy of the light cart is