A body of mass $2\, kg$ moving with a velocity of $3\, m/sec$ collides head on with a body of mass $1\, kg$ moving in opposite direction with a velocity of $4\, m/sec$. After collision, two bodies stick together and move with a common velocity which in $m/sec$ is equal to

  • A

    $1/4$

  • B

    $1/3$

  • C

    $2/3$

  • D

    $3/4$

Similar Questions

Pulley and spring are massless and the friction is absent everwhere. $5\,kg$ block is released from rest. The speed of $5\,kg$ block when $2\,kg$ block leaves the contact with ground is (take force constant of the spring $K = 40\,N/m$ and $g = 10\,m/s^2$ )

Three particles of masses $10g, 20g$ and $40g$ are moving with velocities $10\widehat i,10\widehat j$ and  $10\widehat k$ $m/s$ respectively. If due to some mutual interaction, the first particle comes to  rest and the velocity of second particle becomes $\left( {3\widehat i + 4\widehat j\,\,} \right)\, m/s$, then the velocity of third particle is

A $300\ kg$ crate is dropped vertically onto a conveyor belt that is moving at $1.20\ m/s$ . A motor maintains the belt's constant speed. The belt initially slides under the crate, with a coefficient of friction of $0.400$ . After a short time, the crate is moving at the speed of the belt. During the period in which the crate is being accelerated, find the work done by the motor which drives the belt ................... $\mathrm{J}$

A bullet of mass $m$ moving with a speed $v$ strikes a wooden block of mass $M$ and gets embedded into the block. The final speed is

A vertical spring with force constant $K$ is fixed on a table. A ball of mass $m$ at a height $h$ above the free upper end of the spring falls vertically on the spring so that the spring is compressed by a distance $d$. The net work done in the process is