In an elastic collision of two particles the following quantity is conserved
Momentum of each particle
Speed of each particle
Kinetic energy of each particle
Total kinetic energy of both the particles
A 3.628 kg freight car moving along a horizontal rail road spur track at $7.2\; km/hour$ strikes a bumper whose coil springs experiences a maximum compression of $30 \;cm$ in stopping the car. The elastic potential energy of the springs at the instant when they are compressed $15\; cm$ is [2013]
(a) $12.1 \times 10^4\;J$ (b) $121 \times 10^4\;J$ (c) $1.21 \times 10^4\;J$ (d) $1.21 \times 10^4\;J$
The work done by a force $\vec F = \left( { - 6{x^3}\hat i} \right)\,N$ in displacing a particle from $x = 4\,m$ to $x = -2\,m$ is ............... $\mathrm{J}$
A vertical spring with force constant $K$ is fixed on a table. A ball of mass $m$ at a height $h$ above the free upper end of the spring falls vertically on the spring so that the spring is compressed by a distance $d$. The net work done in the process is
Two bodies of masses $m_1$ and $m_2$ are moving with same kinetic energy. If $P_1$ and $P_2$ are their respective momentum, the ratio $\frac{P_1}{P_2}$ is equal to
A light and a heavy body have equal kinetic energy. Which one has a greater momentum