A body of mass $50\, kg$ is projected vertically upwards with velocity of $100 \,m/sec$. $5 \,seconds$ after this body breaks into $20\, kg$ and $30 \,kg$. If $20\, kg $ piece travels upwards with $150 \,m/sec$, then the velocity of other block will be

  • A

    $15 \,m/sec$ downwards

  • B

    $15\, m/sec$ upwards

  • C

    $51\, m/sec$ downwards

  • D

    $51\, m/sec$ upwards

Similar Questions

Starting from rest on her swing at initial height $h_0$ above the ground, Saina swings forward. At the lowest point of her motion, she grabs her bag that lies on the ground. Saina continues swinging forward to reach maximum height $h_1$ . She then swings backward and when reaching the lowest point of motion again, she simple lets go off the bag, which falls freely. Saina's backward swing then reaches maximum height $h_2$ . Neglecting air resistance, how are the three heights related?

A projectile of mass $M$ is fired so that the horizontal range is $4\, km$. At the highest point the projectile explodes in two parts of masses $M/4$ and $3M/4$ respectively and the heavier part starts falling down vertically with zero initial speed. The horizontal range (distance from point of firing) of the lighter part is .................. $\mathrm{km}$

  • [JEE MAIN 2013]

$A$ projectile of mass $"m"$ is projected from ground with a speed of $50 \,m/s$ at an angle of $53^o$ with the horizontal. It breaks up into two equal parts at the highest point of the trajectory. One particle coming to rest immediately after the explosion. The distance between the pieces of the projectile when they reach the ground are:

A particle of mass $m$ moving horizontally with $v_0$ strikes $a$ smooth wedge of mass $M$, as shown in figure. After collision, the ball starts moving up the inclined face of the wedge and rises to $a$ height $h$. The final velocity of the wedge $v_2$ is

 

A light spring of length $20\, cm$ and force constant $2\, kg/cm$ is placed vertically on a table. A small block of mass $1\, kg$. falls on it. The length $h$ from the surface of the table at which the ball will have the maximum velocity is ............... $\mathrm{cm}$