A body rolls down an inclined plane without slipping. The kinetic energy of rotation is $50 \,\%$ of its translational kinetic energy. The body is :
Solid sphere
Solid cylinder
Hollow cylinder
Ring
A flywheel has moment of inertia $4\ kg - {m^2}$ and has kinetic energy of $200\ J$. Calculate the number of revolutions it makes before coming to rest if a constant opposing couple of $5\ N - m$ is applied to the flywheel .......... $rev$
A wheel is rotaing freely with an angular speed $\omega$ on a shaft. The moment of inertia of the wheel is $I$ and the moment of inertia of the shaft is negligible. Another wheel of momet of inertia $3I$ initially at rest is suddenly coupled to the same shaft. The resultant fractional loss in the kinetic energy of the system is :
$A$ uniform rod of mass $m$ and length $l$ hinged at its end is released from rest when it is in the horizontal position. The normal reaction at the hinge when the rod becomes vertical is :
One twirls a circular ring (of mass $M$ and radius $R$ ) near the tip of one's finger as shown in Figure $1$ . In the process the finger never loses contact with the inner rim of the ring. The finger traces out the surface of a cone, shown by the dotted line. The radius of the path traced out by the point where the ring and the finger is in contact is $\mathrm{r}$. The finger rotates with an angular velocity $\omega_0$. The rotating ring rolls without slipping on the outside of a smaller circle described by the point where the ring and the finger is in contact (Figure $2$). The coefficient of friction between the ring and the finger is $\mu$ and the acceleration due to gravity is $g$.
(IMAGE)
($1$) The total kinetic energy of the ring is
$[A]$ $\mathrm{M} \omega_0^2 \mathrm{R}^2$ $[B]$ $\frac{1}{2} \mathrm{M} \omega_0^2(\mathrm{R}-\mathrm{r})^2$ $[C]$ $\mathrm{M \omega}_0^2(\mathrm{R}-\mathrm{r})^2$ $[D]$ $\frac{3}{2} \mathrm{M} \omega_0^2(\mathrm{R}-\mathrm{r})^2$
($2$) The minimum value of $\omega_0$ below which the ring will drop down is
$[A]$ $\sqrt{\frac{g}{\mu(R-r)}}$ $[B]$ $\sqrt{\frac{2 g}{\mu(R-r)}}$ $[C]$ $\sqrt{\frac{3 g}{2 \mu(R-r)}}$ $[D]$ $\sqrt{\frac{g}{2 \mu(R-r)}}$
Givin the answer quetion ($1$) and ($2$)
A ring of mass $M$ and radius $R$ is rotating about its axis with angular velocity $\omega $. Two identical bodies each of mass $m$ are now gently attached at the two ends of a diameter of the ring. Because of this, the kinetic energy loss will be