Gujarati
Hindi
6.System of Particles and Rotational Motion
hard

One end of rod of length $L$ is on horizontal plane. It is inclined at angle $\alpha$ to  horizontal plane. When released its angular velocity after coming to horizontal plane is 

A

$\sqrt{\frac{3g \sin \alpha}{L}}$

B

$\sqrt{\frac{2L}{3g \sin \alpha}}$

C

$\sqrt{\frac{6g \sin \alpha}{L}}$

D

$\sqrt{\frac{L}{g \sin \alpha}}$

Solution

Energy balance method

$\operatorname{mg} \frac{\mathrm{L}}{2} \sin \alpha=\frac{1}{2} \mathrm{I} \omega^{2}$

$m g \frac{L}{2} \sin \alpha=\frac{1}{2} \frac{m L^{2}}{3} \omega^{2}$

$\omega=\sqrt{\frac{3 g \sin \alpha}{L}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.