7.Gravitation
medium

A body starts from rest from a point distance $R_0$ from the centre of the earth. The velocity acquired by the body when it reaches the surface of the earth will be ($R$ represents radius of the earth).

A

$2\,GM\,\left( {\frac{1}{R} - \frac{1}{{{R_0}}}} \right)$

B

$\sqrt {2\,GM\,\left( {\frac{1}{{{R_0}}} - \frac{1}{R}} \right)} $

C

$GM\,\left( {\frac{1}{R} - \frac{1}{{{R_0}}}} \right)$

D

$2\,GM\,\sqrt {\left( {\frac{1}{R} - \frac{1}{{{R_0}}}} \right)} $

(AIIMS-2014)

Solution

$P.E = \int_{{R_0}}^R {\frac{{GMm}}{{{r^2}}}dr =  – GMm\left[ {\frac{1}{R} – \frac{1}{{{R_0}}}} \right]} $

The $K.E.$ acuired by the body at the 

$surface = \frac{1}{2}m\,{v^2}$

$\therefore \frac{1}{2}m{v^2} =  – GMm\left[ {\frac{1}{R} – \frac{1}{{{R_0}}}} \right]$

$v = \sqrt {2GM\left( {\frac{1}{{{R_0}}} – \frac{1}{R}} \right)} $

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.