- Home
- Standard 11
- Physics
A body starts from rest from a point distance $R_0$ from the centre of the earth. The velocity acquired by the body when it reaches the surface of the earth will be ($R$ represents radius of the earth).
$2\,GM\,\left( {\frac{1}{R} - \frac{1}{{{R_0}}}} \right)$
$\sqrt {2\,GM\,\left( {\frac{1}{{{R_0}}} - \frac{1}{R}} \right)} $
$GM\,\left( {\frac{1}{R} - \frac{1}{{{R_0}}}} \right)$
$2\,GM\,\sqrt {\left( {\frac{1}{R} - \frac{1}{{{R_0}}}} \right)} $
Solution
$P.E = \int_{{R_0}}^R {\frac{{GMm}}{{{r^2}}}dr = – GMm\left[ {\frac{1}{R} – \frac{1}{{{R_0}}}} \right]} $
The $K.E.$ acuired by the body at the
$surface = \frac{1}{2}m\,{v^2}$
$\therefore \frac{1}{2}m{v^2} = – GMm\left[ {\frac{1}{R} – \frac{1}{{{R_0}}}} \right]$
$v = \sqrt {2GM\left( {\frac{1}{{{R_0}}} – \frac{1}{R}} \right)} $