Gujarati
7.Gravitation
hard

An object is propelled vertically to a maximum height of $4 R$ from the surface of a planet of radius $R$ and mass $M$. The speed of object when it returns to the surface of the planet is

A

$2 \sqrt{\frac{2 G M}{5 R}}$

B

$\sqrt{\frac{G M}{2 R}}$

C

$\sqrt{\frac{3 G M}{2 R}}$

D

$\sqrt{\frac{G M}{5 R}}$

(KVPY-2015)

Solution

(a)

Let $v=$ velocity of object on reaching surface of planet.

Applying energy conservation between points $A$ and $B$, we have

Total energy at $A=$ Total energy at $B$

$\Rightarrow$ Potential encrgy at separation

$(4 R+R)=$ Potential energy at separation

$R+$ Kinctic energy at surface

$\Rightarrow \quad \frac{-G M m}{5 R}=\frac{-G M m}{R}+\frac{1}{2} m v^2$

where, $m=$ mass of object.

$\Rightarrow \frac{G M m}{R}(1-1)-\frac{1}{5}{ }^5 v^2 \Rightarrow \frac{8 M}{5 R}=v^2$

$\therefore$ Velocity at surface, $v=2 \sqrt{\frac{2}{5} \frac{G M}{R}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.