A body tied to a string of length $L$ is revolved in a vertical circle with minimum velocity, when the body reaches the upper most point the string breaks and the body moves under the influence of the gravitational field of earth along a parabolic path. The horizontal range $AC$ of the body will be
$x = L$
$x = 2L$
$x = 2\sqrt {2L}$
$x = \sqrt {2L}$
A satellite can be in a geostationary orbit around a planet at a distance $r$ from the centre of the planet. If the angular velocity of the planet about its axis doubles, a satellite can now be in a geostationary orbit around the planet if its distance from the centre of the planet is
Two stars of masses $m_1$ and $m_2$ are parts of a binary star system. The radii of their orbits are $r_1$ and $r_2$ respectively, measured from the centre of mass of the system. The magnitude of gravitational force $m_1$ exerts on $m_2$ is
At what height above the earth's surface is the value of $'g'$ is same as in a $200\, km$ deep mine ........ $km$
The change in the value of $‘g’$ at a height $‘h’$ above the surface of the earth is the same as at a depth $‘d’$ below the surface of earth. When both $‘d’$ and $‘h’$ are much smaller than the radius of earth, then which one of the following is correct?
A small ball of mass $'m'$ is released at a height $'R'$ above the Earth surface, as shown in the figure. If the maximum depth of the ball to which it goes is $R/2$ inside the Earth through a narrow grove before coming to rest momentarily. The grove, contain an ideal spring of spring constant $K$ and natural length $R,$ the value of $K$ is ( $R$ is radius of Earth and $M$ mass of Earth)