Gujarati
Hindi
7.Gravitation
normal

If the gravitational acceleration at surface of Earth is $g$, then increase in potential energy in lifting an object of mass $m$ to a height equal to half of radius of earth from surface will be

A

$\frac{{mgR}}{2}$

B

$\frac{{2mgR}}{3}$

C

$\frac{{mgR}}{4}$

D

$\frac{{mgR}}{3}$

Solution

$\mathrm{U}_{\mathrm{i}}=-\frac{\mathrm{GMm}}{\mathrm{R}}, \mathrm{U}_{\mathrm{f}}=-\frac{\mathrm{GMm}}{\mathrm{R}+\mathrm{R} / 2}$

$\mathrm{KE}_{\mathrm{i}}=\mathrm{KE}_{\mathrm{f}}=0$

$\Delta \mathrm{U}=\mathrm{U}_{\mathrm{f}}-\mathrm{U}_{\mathrm{i}}=-\frac{2 \mathrm{GMm}}{3 \mathrm{R}}+\frac{\mathrm{GMm}}{\mathrm{R}}$

$\Delta \mathrm{U}=\frac{\mathrm{GMm}}{3 \mathrm{R}} \quad$ As $\frac{\mathrm{GM}}{\mathrm{R}^{2}}=\mathrm{g}$

$\Delta \mathrm{U}=\frac{\mathrm{mg} \mathrm{R}}{3}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.