- Home
- Standard 11
- Physics
7.Gravitation
normal
Asatellite is launched into a circular orbit of radius $R$ around the earth. A second satellite is launched into an orbit of radius $1.02\,R.$ The period of second satellite is larger than the first one by approximately ........ $\%$
A
$1.5$
B
$3$
C
$1$
D
$2$
Solution
When $r=R$
$V=\sqrt{g / R}$
$T_{1}=\frac{2 \pi R}{\sqrt{g / R}}$
$=\frac{2 \pi}{\sqrt{g}}(\sqrt{R})^{3}$
When $r=1.02 R$
$V=\sqrt{1.02 g / R}$
$T_{2}=\frac{2 \pi \sqrt{1.02 R}}{g / R}$
$\%$Change in time period
$=\frac{2 \pi}{g}(\sqrt{R})^{3} \times(\sqrt{1.02})^{3}-(1)^{3} \times 100$
$=\frac{2 \pi}{g}$
$=3 \%$
Standard 11
Physics
Similar Questions
normal
normal
normal