A body weighs $700\,gm\,wt.$ on the surface of the earth. How much will it weigh on the surface of a planet whose mass is $\frac {1}{7}$ and radius half of that of the earth ....... $gm\, wt$
$200$
$400$
$50$
$300$
Suppose, the acceleration due to gravity at the Earth's surface is $10\, m\, s^{-2}$ and at the surface of Mars it is $4.0\, m\, s^{-2}$. A $60\, kg$ pasenger goes from the Earth to the Mars in a spaceship moving with a constant velocity. Neglect all other objects in the sky. Which part of figure best represents the weight (net gravitational force) of the passenger as a function of time?
Two spheres of masses $m$ and $M$ are situated in air and the gravitational force between them is $F.$ The space around the masses is now filled with a liquid of specific gravity $3.$ The gravitational force will now be
A clock $S$ is based on oscillation of a spring and a clock $P$ is based on pendulum motion. Both clocks run at the same rate on earth. On a planet having the same density as earth but twice the radius
The value of $g$ at the surface of earth is $9.8 \,m / s ^2$. Then the value of ' $g$ ' at a place $480 \,km$ above the surface of the earth will be nearly .......... $m / s ^2$ (radius of the earth is $6400 \,km$ )
At what altitude will the acceleration due to gravity be $25\% $ of that at the earth’s surface (given radius of earth is $R$) ?