2.Motion in Straight Line
hard

नियत चाल से चलती हुयी ट्रेन के एक डिब्बे को अचानक अलग कर दिया जाता है जिससे वह कुछ दूरी तय करने के पश्चात् रुक जाता है। समान समय में डिब्बे द्वारा तथा शेष ट्रेन द्वारा तय की गयी दूरियों में सम्बन्ध होगा

A

दोनों समान होंगी

B

पहली दूसरी की आधी होगी

C

पहली, दूसरी की एक चौथाई होगी

D

कोई निश्चित अनुपात नहीं होगा

Solution

(b) माना कि बोगी (डिब्बे) में मंदन $'a'$ है तब इसके द्वारा तय की गयी दूरी $'S'$ होगी। यदि रेलगाडी से अलग होने के पश्चात् बोगी (डिब्बे) का प्रारंभिक वेग $u$ है (अर्थात् रेलगाड़ी की चाल नियत है)

${v^2} = {u^2} + 2aS \Rightarrow 0 = {u^2} – 2aS \Rightarrow {s_b} = \frac{{{u^2}}}{{2a}}$

बोगी (डिब्बे) को रुकने में लगा समय

$v = u + at \Rightarrow 0 = u – at \Rightarrow t = \frac{u}{a}$

इस $t$ समय में रेलगाड़ी द्वारा चली गयी दूरी $ = {S_t} = ut = \frac{{{u^2}}}{a}$

अत: अनुपात $\frac{{{S_b}}}{{{S_t}}} = \frac{1}{2}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.