A bomb of mass $9\, kg$ explodes into two pieces of masses $3\, kg$ and $6\, kg$. The velocity of mass $3\, kg$ is $16\, m/s$. The $KE$ of mass $6\, kg$ (in joule) is
$96$
$384$
$192$
$768$
A rifle bullets loses $\left(\frac{1}{20}\right)^{th}$ of its velocity in passing through a plank. Assuming that the plank exerts a constant retarding force, the least number of such planks required just to stop the bullet is .............
After head on elastic collision between two balls of equal masses , one is observed to have a speed of $3\,\,m/s$ along positive $x-$ axis and the other has a speed of $2\,\,m/s$ along negative $x$ axis. The original velocities of the balls are
A wooden block of mass $M$ is suspended by a cord and is at rest. A bullet of mass $m,$ moving with a velocity $v$ passes through the block and comes out with a velocity $v/2$ in the same direction. If there is no loss in kinetic energy, then upto what height the block will rise
Consider two carts, of masses $m$ and $2m$ , at rest on an air track. If you push both the carts for $3\,s$ exerting equal force on each, the kinetic energy of the light cart is
A ball of mass $M$ falls from a height $h$ on a floor. If co-efficient of restitution is $e$, the height attained by the ball after two rebounds is