A force acts on a $3\, gm$ particle in such a way that the position of the particle as a function of time is given by $x = 3t -4t^2 + t^3$, where $x$ is in $meters$ and $t$ is in $seconds$ . The work done during the first $4\, second$ is .............. $\mathrm{mJ}$
$384$
$168$
$528$
$541$
A body is falling under gravity from rest. When it loses a gravitational potential energy by $U,$ its speed increases to $v.$ The mass of the body shall be
A small block of mass $m$ slides along a smooth frictional track as shown in the figure. If it starts from rest at $P$ , velocity of block at point $Q$ is
A ball moving with velocity $2\, m/s$ collides head-on with another stationary ball of double the mass. If the coefficient of restitution is $0.5$, then their velocities (in $m/s$) after collision will be
Ball $A$ moving at $12\ m/s$ collides elastically with $B$ at rest as shown. If both balls have the same mass, what is the final velocity of ball $A$ ? .................. $m/s$
A force of $\left( {2\hat i + 3\hat j + 4\hat k} \right)\,N$ acts on a body for $4\, sec$ and produces a displacement of $\left( {3\hat i + 4\hat j + 5\hat k} \right)\,m.$ The power used is ............. $\mathrm{W}$