Gujarati
Hindi
5.Work, Energy, Power and Collision
normal

A bullet of mass $m$ moving with velocity $v$ strikes a block of mass $M$ at rest and gets embedded into it. The kinetic energy of the composite block will be

A

$\frac{1}{2}m{v^2} \times \frac{m}{{(m + M)}}$

B

$\frac{1}{2}m{v^2} \times \frac{M}{{(m + M)}}$

C

$\frac{1}{2}m{v^2} \times \frac{M+m}{{(M)}}$

D

$\frac{1}{2}m{v^2} \times \frac{2m}{{( M+m)}}$

Solution

Initial momentum of system, $p_{1}=m v$

Let $V$ be the velocity of composite system

Final momentum os system, $p_{2}=(m+M) V$

By conservation of momentum, $m v=(m+M) V$

$\therefore V=\frac{m v}{m+M}$

Kinetic energy of composite block, $K=\frac{1}{2}(M+m) V^{2}=\frac{1}{2}(M+m)\left(\frac{m v}{m+M}\right)^{2}=\frac{1}{2} m v^{2} \times \frac{m}{m+M}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.