A card is drawn from a pack of cards. Find the probability that the card will be a queen or a heart

  • A

    $\frac{4}{3}$

  • B

    $\frac{{16}}{3}$

  • C

    $\frac{4}{{13}}$

  • D

    $\frac{5}{3}$

Similar Questions

A box of oranges is inspected by examining three randomly selected oranges drawn without replacement. If all the three oranges are good, the box is approved for sale, otherwise, it is rejected. Find the probability that a box containing $15$ oranges out of which $12$ are good and $3$ are bad ones will be approved for sale.

Let $A$ and $B$ are two independent events. The probability that both $A$ and $B$ occur together is $1/6$ and the probability that neither of them occurs is $1/3$. The probability of occurrence of $A$ is

True statement $A$ and true statement $B$ are two independent events of an experiment.Let $P\left( A \right) = 0.3$ , $P\left( {A \vee B} \right) = 0.8$ then $P\left( {A \to B} \right)$ is (where $P(X)$ denotes probability that statement $X$​ is true statement)

 

If $A$ and $B$ an two events such that $P\,(A \cup B) = \frac{5}{6}$,$P\,(A \cap B) = \frac{1}{3}$ and $P\,(\bar B) = \frac{1}{3},$ then $P\,(A) = $

Let $A$ and $B$ be two events such that $P\overline {(A \cup B)} = \frac{1}{6},P(A \cap B) = \frac{1}{4}$ and $P(\bar A) = \frac{1}{4},$ where $\bar A$ stands for complement of event $A$. Then events $A$ and $B$ are

  • [AIEEE 2005]