A die is thrown. Let $A$ be the event that the number obtained is greater than $3.$ Let $B$ be the event that the number obtained is less than $5.$ Then $P\left( {A \cup B} \right)$ is
$\frac{3}{5}$
$0$
$1$
$\frac{2}{5}$
If $A, B, C$ are three events associated with a random experiment, prove that
$P ( A \cup B \cup C ) $ $= P ( A )+ P ( B )+ P ( C )- $ $P ( A \cap B )- P ( A \cap C ) $ $- P ( B \cap C )+ $ $P ( A \cap B \cap C )$
The probabilities of occurrence of two events are respectively $0.21$ and $0.49$. The probability that both occurs simultaneously is $0.16$. Then the probability that none of the two occurs is
A die is loaded in such a way that each odd number is twice as likely to occur as each even number. If $E$ is the event that a number greater than or equal to $4$ occurs on a single toss of the die then $P(E)$ is equal to
The probability of solving a question by three students are $\frac{1}{2},\,\,\frac{1}{4},\,\,\frac{1}{6}$ respectively. Probability of question is being solved will be
Let $\mathrm{E}$ and $\mathrm{F}$ be events with $\mathrm{P}(\mathrm{E})=\frac{3}{5}, \mathrm{P}(\mathrm{F})$ $=\frac{3}{10}$ and $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\frac{1}{5} .$ Are $\mathrm{E}$ and $\mathrm{F}$ independent ?