एक ताश की गड्डी से एक पत्ता निकाला जाता है, उसके बेगम या पान का पत्ता होने की प्रायिकता है
$\frac{4}{3}$
$\frac{{16}}{3}$
$\frac{4}{{13}}$
$\frac{5}{3}$
यदि $A$ तथा $B$ घटनायें इस प्रकार हैं कि $P(A \cup B) = 3/4,$ $P(A \cap B) = 1/4,$ $P(\bar A) = 2/3,$ तब $P(\bar A \cap B) =$
एक व्यक्ति के $20$ साल तक जिन्दा रहने की प्रायिकता $\frac{3}{5}$ तथा उसकी पत्नी के $20$ साल तक जिन्दा रहने की प्रायिकता $\frac{2}{3}$ है तो इस बात की प्रायिकता कि उनमें से कम से कम एक जिन्दा ($20$ साल तक) रहे, होगी
$125$ विद्यार्थियों की एक कक्षा में $70$ गणित में, $55$ सांख्यिकी में एवं $30$ दोनों में उत्तीर्ण होते हैं। कक्षा में एक विद्याथि के चुनने पर इसके केवल एक विषय में उत्तीर्ण होने की प्रायिकता होगी
यदि $A$ तथा $B$ कोई दो घटनाएँ हों, तो उनमें से ठीक एक घटना के घटित होने की प्रायिकता है
यदि $P\,(A) = 0.4,\,\,P\,(B) = x,\,\,P\,(A \cup B) = 0.7$ और घटनाएँ $A$ तथा $B$ परस्पर अपवर्जी हों, तो $x = $