11.Thermodynamics
normal

A Carnot engine has an efficiency of $1/6$. When the temperature of the sink is reduced by $62\,^oC$, its efficiency is doubled. The temperatures of the source and the sink are, respectively

A

$62\,^oC,\, 124\,^oC$

B

$99\,^oC,\, 37\,^oC$

C

$37\,^oC,\, 99\,^oC$

D

$124\,^oC, \,62\,^oC$

Solution

Efficiency of Carnot engine $=1-\frac{T_{\sin k}}{T_{\text {source }}}$

Given,

$\frac{1}{6}=1-\frac{T_{\text {sink }}}{T_{\text {soure }}} \Rightarrow \frac{T_{\text {sink }}}{T_{\text {source }}}=\frac{5}{6}\,,\,\,\,\,\,\,\,\,\,\,\,\,\,…(i)$

Also,

$\frac{2}{6}=1-\frac{T_{\sin k}-62}{T_{\text {rource }}} \Rightarrow \frac{62}{T_{\text {source }}}=\frac{1}{6}\,\,\,\,\,\,\,\,\,\,\,…(ii)$

$\therefore \quad \mathrm{T}$ source $=372 \mathrm{K}=99^{\circ} \mathrm{C}$

Also, $T_{\sin k}=\frac{5}{6} \times 372=310 \mathrm{K}=37^{\circ} \mathrm{C}$

(Note: Temperature of source is more than temperature of sink)

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.